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Abstract. A conformal mapping technique is used for predicting the width of the separation zone at a diverging 
open channel flow. The Schwarz-Christoffel transformation is used to transform the physical boundaries of the 
flow into a complex plane and the flow field is solved using modified boundary conditions utilizing a complex 
velocity potential in the resulting hodograph plane. The final solution gives the width of the separation zone in 
nondimensionalized form and provides an inviscid solution for comparative study. 

1. I n t r o d u c t i o n  

Conformal mapping can be used for solving steady, two-dimensional potential flows with a 
free surface in which the flow is bounded partly by rigid walls and partly by free streamlines 
and gravity effects are negligible. Examples are flow of columns of liquids of finite lateral 
dimensions surrounded by gas ( 'unsubmerged' jets) and flow around bodies moving along the 
surface of a body of liquid otherwise at rest under gravity. The broad features of such flows 
can be discerned by momentum integral methods. However, the unknown shape of the free 
streamline makes obtaining an exact mathematical solution very difficult. If the boundaries of 
the flow field consist of piece-wise straight segments, the polygonal physical boundary can be 
mapped onto a complex plane. The solution then can be obtained by determining parametric 
relationships between the flow region in a hodograph plane and the transformed physical 
plane [1 (pp. 376-596), 2]. This technique has been applied previously to studies of jet efflux 
and deflection [3 (pp. 161-191)], transition flows [4], flow past a solid obstruction [5 (pp. 
95-142)], and converging open channel flows [6] among others. 

This paper presents the first such application to diverging open channel flows. Such flows 
occur both naturally as well as man-made. Because of irregular boundaries, naturally occurring 
diversion flows (e.g. alluvial river networks) often will have to be solved by using numerical 
modeling [7, 8]. However, man-made diversion flows usually contain piece-wise straight 
boundaries allowing for the application of conformal mapping techniques. A typical example 
of man-made diversion flow is flow into a water intake situated on the bank of the river. In 
this case, the flow diverges into two branches, one in the direction of the main channel and the 
other at an angle, a,  to the main channel (Fig. 1). Another example is the storm sewer with 
diverging channel junctions. Steady, homogeneous, incompressible viscous flow past such 
junctions is typified by the presence of free streamlines of unknown shape along which the 
pressure can be taken to be constant. 
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Fig. 1. Physical boundaries of channel junction (Z-plane). 
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Fig. 2. Transformation layout for locating stagnation point (~-Plane). 

The angle of diversion, a ,  is kept general. For the sake of simplicity, all the boundaries 
are assumed to be straight. The analysis is done in two steps. Step one involves transforming 
the physical plane into a complex plane using a Schwarz-Christoffel transformation. Next, 
the velocity field is transformed into the hodograph plane and the resulting equations are 
solved. Since this is a two-dimensional potential flow analysis, it is inherent in the analysis 
that the flow is irrotational and inviscid. While this is a major assumption, considering the 
fact that the flow at diversions is highly three dimensional with the secondary currents playing 
an important part in the generation of the structure and dimensions of the free streamline, 
the analysis is nonetheless useful as it gives the approximate lateral dimensions of the free 
streamlines and allows comparison with experimental data. 

2. Analysis 

The analysis parallels that of Ref. [6]. Initially, the position of the stagnation point in the flow 
is located, assuming that there is no free streamline. A free streamline will be incorporated 
later. The location of the stagnation point must be determined as per Ref. [6], so that the flow 
domain can be solved separately, depending on the location of the stagnation point. Hence, 
the cases considered are as follows: 

2.1. DETERMINATION OF THE STAGNATION POINT 

The actual flow plane, Z (Fig. 1), is transformed into a complex plane, ~ (Fig. 2), using the 
Schwarz-Christoffel transformation. Thereby, the flow field is divided into a polygon and 
the final transformation is done, using the limiting boundary conditions. The transformation 
required to map the flow domain on the upper side of the real axis is 

dZ K~ al~r 
d--( -- (~ - a)(~ - b)(~ + l) (1) 
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where a and b are distances of points on real axis of ( plane and K is a complex constant. 
Equation (1) can be simplified to 

d Z  = K~(~_~r)l~r 

[ ° 
x (1 + a ) ( b -  a ) ( a -  4) ( l + a ) ( l + b ) ( ~ + l )  

b 
- ( l + b ) ( b - a ) ( b - ~ ) ] "  

(2) 

To find the real and imaginary parts of K, equation (2) is solved, using the transformed boundary 
conditions. By integrating between points B and D, using Cauchy's Integral theorem [9 (pp. 
1-200)], we transform equation (2) as follows 

b2 - (bl - b3) c o s a  + i(bl - b3) 
sin 

-- KTr 1 a a/7~ b a/7~ ' -- -- c o s a +  c o s a  c o s e c a  (3) 
(1 + a)(1 + b) (1 + a ) ( b -  a) (1 + b ) ( b -  a) 

The variables bl, b2 and b3 represent the widths of the channels 1, 2 and 3, respectively, as 
shown in Fig. 1. By denoting Re(K) = K1 and Im(K) = K2, we may separate the real and 
imaginary parts of equation (3) as follows: 

b2 -- (bl - b3) cos a 
1 a ahr b c~llr ] 

= KlTr  (1 + a)(1 + b) - (1 + a)(b - a) c o s a  + (1 + b)(b - a) cosa ]  (4) 

and 

(bl -- b3) 

1 aa/Tr b~/ ,  
cos oL/cosec a.  (5) =K21r  ( l + a) ( l + b) - ( l + a ) ( b - a ) C ° S a +  ( l + b ) ( b - a )  : 

Furthermore, considering only the imaginary part, integration of equation (2), from (a - e) 
to (a + e) for point E and from (b - e) to (b + e) for point A, such that e --+ 0 where e is an 
infinitesimally small real number, we obtain 

a~#  r 

b3 = K17r (1 + a)(b - a) (6) 

and 

b~/ .  
bl KlTr(1 + b ) ( b -  a) (7) 

It now follows that 
aaDr baDr 

(1 + a)b3 (1 + b)bl (8) 

Substituting equations (6) and (7) in equation (4), we have 

1 a ahr (b3 - bl) ] 
b 2 -  ( b l - b 3 ) c o s a = K 1 7 r  ( l + a ) ( l + b )  - b 3 ( l + a ) ( b - a )  co sa j  . (9) 



358 S.K. Sinha and A.J. Odgaard 

Furthermore, dividing equation (9) by (6), we find 

b3 ~3 coso~ = (1 + b)aa/~ b3 costx . (10) 

Thus, for given values of bl,b2, b3 and or, equations (5), (6), (8) and (10) can be used to 
calculate a, b, K1 and K2. 

The velocity vector in the physical plane can be found by relating the sink and source 
strengths in the complex plane to the velocity potential. The velocity at any point is given 
by 

d W  dW d~ 
-Vx + iV v - d---Z- - d~ d Z  (11) 

where W represents the complex velocity potential, Vz represents the velocity component in 
the x-direction and V v represents the velocity component in the y-direction. Since the velocity 
is zero at the stagnation point, the location of the stagnation point is determined by 

d W  
d---Z- -- 0 (12) 

To represent the incoming and outgoing flows, consider two sinks of strengths ~ and v~ba 
71" 71" 

at ~ = - 1 and ~ = a in the complex plane respectively and a source of strength v ~  at ~ = b. 
7f 

V1, V2 and V3 represent the average velocity through channels 1, 2 and 3, respectively. Hence, 
the complex potential, W is represented as 

W - Vzb2 log (~ + 1) + V3b3 log (~ - a) - Vlbl log(~ - b). (13) 
71- 71" 71" 

By differentiating equation (13), we get 

dW V2b2 V3b3 V1 bl 
+ l) 

This leads to: 

d W  V]bl(( + 1)(( - a) 

dZ K~r~c~/lr 

~(~-b)"  

V2b2(~-a)(~-b) V3b3(~W1)(~-b) 

(14) 

(15) K lr(al ~r K Tc(a/lr 

Also, to relate the discharge going out through the channel branch with respect to the discharge 
from the incoming flow, define 

V2b2 (16) 
rlq -- Vlbl  

Furthermore, mass continuity relates the different values of velocities and widths as follows: 

Vlbl  = V2b2 + V3b3. (17) 

The position of the stagnation point can be found by using equations (12), (16) and (17). For 
the stagnation point to conincide with the comer, D, the value of ~ must be zero, and the value 
of the numerator of equation (15) must be equal to zero. In this case, the critical discharge 
ratio is 

b - a  
r / q c r  - -  b(1 + a) (18) 
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Fig. 3. Physical boundaries of channel junction (stagnation point coincides with comer D) (Z-Plane). 

Hence, when the flow splits between channels 1 and 2 in the ratio of rIqcr the stagnation point 
will coincide with point D. For flow ratios greater than ~qcr, the stagnation point will be located 
between points D and C and for flow ratios less than rlqcr, between D and E. The position of 
the stagnation point on the actual physical plane can be obtained by integrating equation (1) 
between DC or DE, depending on whether the value of rlq is greater than or less than ~qcr 

respectively. 
Note that without separation at any point on the boundary as described previously, the 

velocity at the comer D is infinite. Any fluid flowing past a sharp comer has to seperate from 
the boundary at the comer. Presence of a finite velocity at the comer can be accounted for 
by using the free-streamline approach of Helrnholtz. Furthermore, as shown earlier, there are 
three cases to consider, depending on whether the value of rlq is less than, equal to or greater 
the  ~/qcr. In the subsequent analysis the stagnation point is ar point D. 

2.2. FLOW WITH STAGNATION POINT AT CORNER, D 

The advantage of having a free streamline is that the pressure and hence, the velocity are 
constant along the free streamline. The free streamline represents a boundary with stagnant 
fluid behind it. This is consistent with our assumption that the flow is inviscid. In order to 
determine the location of the free streamline, the Z-plane is transformed onto a Q-plane (Fig. 
4a). This is achieved by using the transformation 

Q = l o g ( ~ ) + i O = l o g { V 2 ( ~ - ~ ) } .  (19) 

Q is an analytic function which transforms the Z-plane on to a straight-edged hodograph 
plane, Q-plane, thereby simplifying the subsequent calculations. Here V is the magnitude of 

the velocity vector, i.e., V = ~/V 2 + V 2. By using the Schwarz-Christoffel transformation to 

project the flow area on to the positive part of the real axis, we obtain the A plane, and 

dQ K 

dA v/A(A + 1) 
(20) 

The transformation legends are shown in Figs. 3, 4a and 4b. Using the boundary conditions 
Q = 7ri at ), = - 1 (Point B) and Q = (Tr - a) i  at A = 0 (Point C), integration of equation 
(20) gives 

(21) 
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Fig. 4. Transformation layout for locating free-streamline (Stagnation Point S coincides with D). (a) Q-Plane; (b) 
A-Plane; (c) W-Plane; (d) A-Plane. 

By comparing equations (19) and (21), we find 

dZ  
½ d---W - cos(a - ao) + i sin(a - ao), (22) 

where 

2a  
ao = - -  arcsina (V/-Z--~). (23) 

71" 

Since the area near the free streamline is of primary interest, it is necessary to relate the 
corresponding points with their mapped images (Figs. 4c and 4d). The Schwarz-Christoffel 
transformation leads to 

dW 
d---~ -- ),' (24) 

where k is a constant. Integrating about point C from (0+0 to (O-e), such that e > O, we 
get 

~'2 (25) 
71" 

where ~2 signifies the rate of discharge per unit width across the diverging branch. Combining 
equations (22), (23) and (25) we obtain 

~2 [_ cos(a - ao) + i sin(a - ao)] dA, (26) d Z -  7rA---~2 

which, when integrated between B and C, yields 

b2 f - A  COS(Or -- Olo)d~ 
x -- --- (27) 

7r J _  t A 
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Fig. 5. Streamline plot at angle, c~ = 30 °. 
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and 

b2 f - , k  sin(oL - O~o)d~. 
Y = ~  1 A 

(28) 

Variables x and y denote the coordinates of the free streamline. The coordinate system is 
shown in Fig. 3. 

3. A p p l i c a t i o n s  

To illustrate the applications of the results, assume that channels 1, 2 and 3 have the same 
width, i.e., bl = b2 = b3. This assumption simplifies equation (8) to 

aalTr b,~l~r 
l + a  l + b  

(29) 

Equation (10) reduces to 

1 - (b - a)  
(1 + b)aa/~r (30) 

Equations (29) and (30) can be solved using the Newton-Raphson scheme for the nonlinear 
system of ordinary differential equations. Note that if a is 90 °, the stagnation point coincides 
with point D for the same r/qcr as the one for converging flows [6]. This observation is expected, 
because the analysis is inviscid and irrotational. Hence for this particular case, the flow lines 
are 'similar', whether the flow is diverging or converging, as there is no energy loss taking 
place. 

Equations (29) and (30) are solved for three values of a.  Streamline plots are shown in 
Figs. 5, 6 and 7. 

Case 1: a = 30 °. In this case, a=0.016, b=1.038, and r/qcr=0.969. Equations (27) and 
(28) then yield the free streamline shown in Fig. 5. In Fig. 5, the actual dimensions of the 
free streamline with respect to the dimensions of the channel are plotted. BCD represents 
the physical channel boundary (refer Fig. 3). The dimensions of the free streamline increases 
from 0 (i.e., coinciding at comer B) to an asymptotic value. At the asymptotic end, C, the flow 
becomes parallel to sides BD and CD. 
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Fig. 7. Streamline plot at angle, a = 90 °. 

Case 2: a = 60 °. In this case, a=0.149, b=1.452 and rlqcr=0.780. The free streamline is 
plotted in Fig. 6. 

Case 3: ot = 90 °. In this case, a=0.382, b=2.618 and rlqcr=0.618, and the streamline is as 
shown Fig. 7. 

As expected, the size of the separation zone increases with increasing a .  Furthermore, 
increasing the discharge ratio rlq to a value larger than ~}qcr results in the shifting of  the 
stagnation point on the side DC. In effect, this will result in the reduction of the width of the 
separation zone. Similarly, if  the discharge ratio rlq is reduced to a value lower than r}qcr, the 
separation zone will be increased in size. 

The authors could not find experimental results for the cases when a is not equal to 90 °. 
The separation zone in a 90 ° branch was measured by Kasthuri and Pundariknathan [10]. They 
obtained by regression the following relationship between maximum width of separation H 
and discharge ratio rlq: 

H = 0.504r/q z _ 0.893r/q + 0.861 (31) 
b2 
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Substituting the value of  T]qcr derived herein, r/qer -- 0.618, we get 

H 
- -  = 0.502 
b2 

(32) 

This value is slightly lower than that predicted by the theory, which is ~ = 0.636 (Fig. 7). 

4. Discussion 

The above analysis provides a model for calculating the width of  the separation zone, utilizing 
the conformal mapping technique. The analysis however, is expected to over-estimate the 
width due to the assumptions made in simplifying the analysis. The most important factor 
contibuting to the difference between the predicted and the actual data is the omission of  energy 
loss at the junction. Also, the fluid behind the free streamline is assumed to be stagnant, which 
in reality, it is not. In reality, flow behind the free streamline leads to a reduction in pressure 
within the separation zone and hence, may account for lower values of  the width of  the 
separation zone. Use of  potential flow theory limits the analysis to flow without vorticities or 
flows with very low speed. Nonetheless, the potential-flow approach provides insight into the 
physics of  the problem and it provides and alternate theoretical model. 
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